Bude Primary Academy - Juniors

Calculation Policy

Addition		
Year 1 - Addition	Add 1-digit numbers within 10 (aggregation)	
Concrete	Pictorial	Abstract
	0000000 \square	$4+3=7$
Year 1 - Addition	Add 1-digit numbers within 10 (augmentation)	
Concrete	Pictorial	Abstract
		$4+3=7$

Year 1/2-Addition	Add 1 and 2-digit numbers to 20	
Concrete	Pictorial	Abstract
The calculation is shown alongside the use of concrete resources.		
$8+7=15$		

Year 2 - Addition	Add three 1-digit numbers
Concrete	Pictorial Abstract
$\begin{aligned} & 7+6+3=16 \quad \begin{array}{l} \text { The calculation is shown } \\ \text { alongside the use of } \\ \text { concrete resources. } \end{array} \\ & 10 \end{aligned}$	
Key skills and concepts	When adding three 1-digit numbers: - Encourage children to look for number bonds to $\mathbf{1 0}$ or doubles - This skill supports children's understanding of commutativity - Manipulatives that show number bonds to 10 are effective to use

Year 2/3-Addition	Add two 2-digit numbers to 100	
Concrete	Pictorial	Abstract
$38+23=61$		
Key skills and concepts	When adding two 2-digit numbers to Column method - Encourage children to use the 10 or place value counters Counting on - A blank number line can be - Encourage children to jump to	100: formal method alongside base used to count on to find the total multiples of 10 for efficiency

Year 3 - Addition	Add numbers with up to 3 digits
Concrete	Pictorial ${ }^{\text {abstract }}$
Key skills and concepts	When adding numbers with up to 3 digits: - Base 10 and place value counters are the most effective manipulatives - As number sizes increase, place value counters are more efficient - Children write the calculation alongside any concrete resources so the links to the written column method can be seen - Plain counters on a place value grid can be used as concrete resources and for images / children's drawings

Year 4 - Addition	Add numbers with up to 4 digits
Concrete	Pictorial ${ }^{\text {abstract }}$
	Alongside the use of concrete resources, images and drawings of these resources are used. $\begin{array}{r} 1378 \\ +2148 \\ \hline 3526 \\ \hline 11 \end{array}$ $1,378+2,148=3,526$
Key skills and concepts	When adding numbers with up to 4 digits: - Base 10 and place value counters are the most effective manipulatives - As number sizes increase, place value counters are more efficient - Children write the calculation alongside any concrete resources so the links to the written column method can be seen - Plain counters on a place value grid can be used as concrete resources and for images / children's drawings

Year 5/6-Addition	Add numbers with more than 4 digits	
Concrete	Pictorial	Abstract
		$104,328+61,731=166,059$
	Alongside the use of concrete resources, images and drawings of these resources are used.	

Key skills and concepts

When adding numbers with more than 4 digits:

- Place value counters or plain counters on a place value grid are the most effective manipulatives
- At this stage children should be encouraged to work in the abstract, using the column method to add larger numbers efficiently

Year 5 - Addition	Add numbers with up to 3 decimal places
Concrete	Pictorial Abstract
	Alongside the use of concrete resources, images and drawings of these resources are used.
Key skills and concepts	When adding numbers with up to 3 decimal places: - Place value counters or plain counters on a place value grid are the most effective manipulatives - Ensure children have experience of adding decimals with a variety of decimal places - Ensure children have experience putting this skill into context when adding money and measures

Subtraction		
Year 1 - Subtraction	Subtract 1-digit within 10 (partitioning)	
Concrete	Pictorial	Abstract
OOO 0 0 0 0 $7-3=4$	$\begin{array}{\|l\|} \hline \text { Alongside the use of } \\ \text { concrete resources, } \\ \text { images and drawings of } \\ \text { these resources are used. } \\ \hline \end{array}$	
Year 1 -Subtraction	Subtract 1-digit numbers within 10 (reduction)	
Concrete	Pictorial	Abstract
		$7-3=4$

Year 1 - Subtraction	Subtract 1-digit within 10 (finding the difference)	
Concrete	Pictorial	Abstract
10000000		$7-3=4$

Year 1/2-Subtraction	Subtract 1 and 2-digit numbers to 20
Concrete	Pictorial ${ }^{\text {abstract }}$
Cubes and bead strings are also used The calculation is shown $14-6=8$ alongside the use of concrete resources.	\square 14 \square 8 $14-6=8$
Key skills and concepts	When subtracting 1 and 2-digit numbers to 20: - Show the calculation next to concrete and pictorial representations - Highlight the importance of ten ones equalling one ten when subtracting 1 -digit numbers that cross 10 - Encourage children to find the number bond to 10 when partitioning the subtracted number. Use ten frames and number lines to support this.

Year 4 - Subtraction	Subtract number	th up to 4 digits
Concrete	Pictorial	Abstract
31 4357 -2735 The calculation is shown alongside the use of concrete resources. 1622	Alongside the use of concrete resources, images and drawings of these resources are used.	$\begin{array}{rc} 4,357 \\ 31757 & 2,35 \\ 43 \\ -2735 & 4,357-2,735=1,622 \\ \hline 1622 & \\ \hline \end{array}$
Key skills and concepts	When subtracting numbers with up to - Base 10 and place value cou manipulatives - As number sizes increase, pla - Children write the calculatio so the links to the written colum - Plain counters on a place value resources and for images an	digits: ers are the most effective e value counters are more efficient alongside any concrete resources method can be seen grid can be used as concrete children's drawings

Year 5 - Subtraction	Subtract with up to 3 decimal places
Concrete	Pictorial Abstract
$\begin{array}{r} 3157 \\ 4357 \\ -\quad 2735 \\ \hline 1622 \\ \hline \end{array}$ The calculation is shown alongside the use of any concrete resources.	Alongside the use of concrete resources, images and drawings of these resources are used.
Key skills and concepts	When subtracting numbers with up to 3 decimal places: - Place value counters or plain counters on a place value grid are the most effective manipulatives - Ensure children have experience of adding decimals with a variety of decimal places - Ensure children have experience putting this skill into context when subtracting money and measures

Multiplication

Multiplication		
Year 1/2-Multiplication	Solve 1-step problems using multiplication	
Concrete	Pictorial	Abstract
		One bag holds 5 apples. How many apples do 4 bags hold? $\begin{gathered} 5+5+5+5=20 \\ 4 \times 5=20 \\ 5 \times 4=20 \end{gathered}$
Key skills and concepts	When solving 1 -step problems using - Children represent multiplicatio different ways - In Year 1 use concrete \& pict problems. Children are not ex formally. - In Year 2 children are introdu	tiplication: repeated addition in many representations to solve ed to record multiplication to the multiplication symbol

Year 3/4-Multiplication	Multiply 2-digit numbers by 1-digit numbers
Concrete	Pictorial Abstract
The calculation is shown alongside the use of concrete resources.	
Key skills and concepts	When multiplying 2-digit numbers by 1-digit numbers: - The expanded method can be used before moving on to the short multiplication method - Place value counters are used to support the understanding of the method rather than the supporting of multiplication (use smaller calculations to demonstrate the method before moving onto the abstract), children should use their times table knowledge (times table squares can be used to support children with gaps in their knowledge)

Year 3/4-Multiplication	Multiply 3-digit numbers by 1-digit numbers	
Concrete	Pictorial	Abstract
		$245 \times 4=980$
Key skills and concepts	When multiplying 3-digit numbers by 1-digit numbers: - When moving to 3 -digit by 1 -digt multiplication encourage children to move towards the short, formal written method. - Base 10 \& place value counters support the understanding of the written method. - Limit the number of exchanges needed \& move children away from using resources when multiplying larger numbers.	

Year 5 - Multiplication	Multiply 4-digit numbers by 1-digit numbers
Concrete	Pictorial Abstract
	Alongside the use of concrete resources, images and drawings of these resources are used. $1,826 \times 3=5,478$
Key skills and concepts	When multiplying 4-digit numbers by 1-digit numbers: - Place value counters are the most effective manipulatives - Place value counters are used to support the understanding of the method rather than the supporting of multiplication, as children should use their times table knowledge (times table squares can be used to support children with gaps in their knowledge). - Ensure exchanged digits are placed underneath and keep this consistent.

Year 5 - Multiplication	Multiply 2-digit numbers by 2-digit numbers
Concrete	Pictorial ${ }^{\text {a }}$ Abstract
Key skills and concepts	When multiplying 2-digit numbers by 2-digit numbers: - Written methods are the most accurate \& efficient as concrete and pictorial representations become less effective - If they are struggling with times tables, provide multiplication grids - Ensure exchanged digits are placed underneath and keep this consistent.

Division

Year 1/2-Division	Solve 1 -step problems using division (sharing) Divide 2-digits by 1-digit (sharing with no exchange)	
Concrete	Pictorial	Abstract
$\begin{aligned} & 00000 \\ & 00000 \\ & 00000 \\ & 00000 \\ & \because \because \because \ddots \end{aligned}$	Alongside the use of concrete 00000 00800 00000	
Key skills and concepts	When solving 1 -step problems using - Children solve problems by shar - In Year 1 use concrete \& pic problems. Children are not formally. - In Year 2 children are introdu	ion (sharing): amounts into equal groups representations to solve do record division the division symbol

Year 1/2-Division	Solve 1-step problems using division (grouping)
Concrete	Pictorial Abstract
Key skills and concepts	When solving 1 -step problems using division (grouping): - Children solve problems by grouping \& counting the number of groups - Grouping encourages counting in multiples and links to repeated subtraction - Use concrete representations in fixed groups to show the link between multiplication \& division.

Year 2/3-Division	Divide 2-digits by 1-digit (sharing with no exchange)
Concrete	Pictorial ${ }^{\text {a }}$ Abstract
	$48 \div 2=24$
Tens 0000 00 000 00 0000	
Key skills and concepts	When dividing 2-digits by 1 -digit (sharing with no exchange): - Use manipulatives which allow children to partition into tens and ones - Base 10 \& place value counters can be used to share numbers into equal groups - Use part-whole models to show a clear written method that matches the concrete representation

Year 3/4-Division	Divide 2-digits by 1-digit (sharing with remainders)
Concrete	Pictorial Abstract
 $53 \div 4=13 \mathrm{r} 1$ The calculation is shown alongside the use of concrete resources	
Key skills and concepts	When dividing 2-digits by 1-digit (sharing with remainders): - Use place value counters or Base 10 to exchange one ten for ten ones when dividing numbers involving an exchange - Starting with the equipment outside the place value grid will highlight the remainders as they will be left outside the grid once the equal groups have been made - Flexible partitioning in a part-whole model supports this method

Year 4/5-Division	Divide 2-digits by 1-digit (grouping)
Concrete	Pictorial ${ }^{\text {a }}$ Abstract
Key skills and concepts	When dividing 2-digits by 1-digit (grouping): - When using the short division method, use grouping. Starting with the largest place value, group by the divisor - Language is important. Children consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?' - Remainders can be seen clearly as they are left ungrouped

Year 4 - Division	Divide 3-digits by 1-digit (sharing)
Concrete	Pictorial ${ }^{\text {abstract }}$
	$844 \div 4=211$ 844 ? ? ? ? $844 \div 4=211$
Key skills and concepts	When dividing 3-digits by 1-digit (sharing) - Place value counters can be used to share 3-digit numbers into groups - Start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This will also help highlight remainders - Flexible partitioning in a part-whole model supports this method

Year 5 - Division	Divide 3-digits by 1-digit (grouping)
Concrete	Pictorial Abstract
2 1 4 4 8 5 	Alongside the use of concrete resources images and drawings of these resources are used.\quad\begin{tabular}{\|c
\hline	
\end{tabular}	
Key skills and concepts	When dividing 3-digits by 1-digit (grouping) - Children can continue to use grouping to support their understanding of short division - Place value counters and plain counters can be used on a place value grid to support understanding - Children can draw their own counters \& group them through a more pictorial approach

Year 5 - Division	Divide 4-digits by 1-digit (grouping)
Concrete	Pictorial
	Alongside the use of concrete resources images and drawings of these resources are used. $8,532 \div 2=4,266$
Key skills and concepts	When dividing 4-digits by 1-digit (grouping): - Place value counters and plain counters can be used on a place value grid to support understanding - Children can draw their own counters \& group them through a more pictorial approach - Encourage children to move away from the concrete \& pictorial when dividing numbers with multiple exchanges

Year 6 - Division	Divide multi-digits by 2-digits (short division)
Concrete	Pictorial ${ }^{\text {abstract }}$
Key skills and concepts	When dividing multi-digits by 2-digits (short division): - Written methods are the most accurate \& efficient as concrete and pictorial representations become less effective - Children can write out multiples to support calculations with larger remainders - Children can solve problems with remainders where the quotient can be rounded as appropriate

Year 6 - Division	Divide multi-digits by 2-digits (long division)
Concrete	Pictorial ${ }^{\text {a }}$ Abstract
Key skills and concepts	When dividing multi-digits by 2-digits (long division): - Written methods are the most accurate \& efficient as concrete and pictorial representations become less effective - Children can also divide by 2-digit numbers using long division - Children can write out multiples to support calculations with larger remainders - Children can solve problems with remainders where the quotient can be rounded as appropriate

Year 6 - Division	Divide multi-digits by 2-digits (long division with remainders)
Concrete	Pictorial ${ }^{\text {abstract }}$
Key skills and concepts	When dividing multi-digits by 2-digits (long division with remainders): - Written methods are the most accurate \& efficient as concrete and pictorial representations become less effective - When a remainder is left at the end of the calculation, either leave it as a remainder or convert it to a fraction. This will depend on the context of the question - Questions can be answered where the quotient needs to be rounded according to the context.

Times tables			
Skill	Year	Representation and models	
Recall and use multipication and division facts for the 2-times table	2	Bar model Number shapes Counters Everyday objects	Ten frames Bead strings Number lines Money
Recall and use multipication and division facts for the 5-times table	2	Bar model Number shapes Counters Everyday objects	Ten frames Bead strings Number lines Money
Recall and use multipication and division facts for the 10-times table	2	Hundred square Number shapes Counters Money	Ten frames Bead strings Number lines Base 10
Recall and use multipication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multipication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multipication and division facts for the 8-times table	3	Hundred square Number shapes Everyday objects	Bead strings Number lines

| Recall and use multipication and
 division facts for the 6-times table | 4 | Hundred square
 Number shapes
 Everyday objects | Bead strings
 Number lines |
| :--- | :---: | :--- | :--- | :--- |
| Recall and use multipication and
 division facts for the 7-times table | 4 | Hundred square
 Number shapes | Bead strings
 Number lines |
| Recall and use multipication and
 division facts for the 9-times table | 4 | Hundred square
 Number shapes | Bead strings
 Number lines |
| Recall and use multipication and
 division facts for the 11-times table | 4 | Hundred square
 Place value counters | Base 10
 Number lines |
| Recall and use multipication and
 division facts for the 12-times table | 4 | Hundred square
 Place value counters | Base 10
 Number lines |

Glossary

Addend - A number to be added to another.
Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.
Complement - in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference - the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange - Change a number or expression for another of an equal value.

Minuend - A quantity or number from which another is subtracted.

Partitioning - Splitting a number into its component parts.

Reduction - Subtraction as take away.
Subitise - Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.
Total - The aggregate or the sum found by addition.

